
10th International Conference on
Global Software Engineering
www.icgse.org
13-16 July 2015, Ciudad Real, Spain

ICGSE ICGSEW

A first approach on legacy system energy
consumption measurement

Victor Cordero, Ignacio García-Rodríguez de Guzmán, Mario Piattini
Institute of Information Technologies and Systems

University of Castilla-La Mancha
Ciudad Real, Spain

Victor.Cordero@alu.uclm.es, {Ignacio.GRodriguez, Mario.Piattini}@uclm.es

Abstract—Nowadays, software sustainability is growing in
importance. Not only IT infrastructure is becoming greener, but
also software. It is possible to find methods and methodologies
intended to produce more sustainable software with lower power
consumption. In spite the slow evolution of software engineering
towards “ Green software”, there exist a huge amount of legacy
systems still running in organizations. Is then necessary to
develop such systems from scratch in order to make them more
sustainable? Probably, the most logical and appropriate answer
for this question is no, since existing software can be refactored in
order to improve its greenability quality characteristic. As a first
step towards power consumption improvement, the authors
propose a tool to analyze legacy systems in order to detect parts
of the system with higher energy consumption. Using the
profiling technique, the proposed tool instrument legacy Java
systems in order to keep track of its execution. This information,
together with the energy consumption (logged by means a data
logger hardware), enables the engineer to analyze legacy system
consumption detecting energy peaks in the system (e.g. the PC).
The analysis gives the engineer evidences about candidates to be
refactored in order to reduce energy consumption.

Keywords—software energy consumption, energy consumption,
profiling, software sustainability, energy data logger, reverse
engineering

I. INTRODUCTION
The interest, necessity and efforts on designing and

implementing green IT solutions has been increasing
dramatically over the past few years [1]. One of the most
influencing reasons which drive this green trend is the IT’s
rapidly rising energy demands, due to growing global adoption
of computing services [2].

New models and proposals are appearing in the quest to
produce sustainable software [3], but all these approaches do
not take into account the huge amount of Information Systems
still running in all the organizations. Therefore is very likely
that these software systems would not be sensitive about any
kind of impact on the environment and are thus not by
considered as green IT.

In the road to improve IT’s greenability Legacy
Information Systems cannot be discarded, since from a
functionality point of view such systems do not present any
problem. Other problem is to determine what does it mean to

improve the sustainability quality characteristic of a software
system. In a few words, such improvement could be
understood as carrying out refactoring tasks in order to
improve the system quality (e.g. sustainability) without
changing the functionality. Assuming this consideration,
should the refactorization be applied over the whole legacy
system or must be directed to these parts (e.g. methods,
modules, loops, hard-drive accesses, etc.)? In response to that
question it is important to highlight two important challenges:

• Refactorization is a time- and effort-consuming
task, so it must be only applied against these parts
of the legacy system that causes excessive power
consumption. In these respect,

• What does really cause high power consumption
in a software system?

Whit all this ideas in mind, the authors of this paper
proposes GreeSoM (Green Software energy Measurement), a
tool intended to measure software energy consumption in order
to detect consumption peaks and work out a set of candidate
software structures involved in such consumption peaks.
GreeSoM is not a tool focused on obtaining an accurate value
of software energy consumption, but information of
consumption peaks merged with detailed execution information
of the legacy system. It is possible to obtain candidate lists of
software structures that would be involved in consumption
peaks by merging software energy consumption records with
software execution traces. With such information, the engineer
has the chance to analyze such particular structures, methods or
functions and improve them making in turn the legacy system
more sustainable by decreasing the energy consumption. So
GreeSoM plays two important roles: (i) detect consumption
peaks and associate the fragments of the legacy system
responsible of such consumption; and (ii) serve as a analysis
platform in order to find situations, patterns or structures that
repetitively causes abnormal power consumption in software
systems. While the first role of GreeSoM is intended to
improve the sustainability quality characteristic of software
systems, the second is focused on building a “green software
engineering knowledge” related with software sustainability by
analysing software system and extracting conclusions of the
case studies.

2015 IEEE 10th International Conference on Global Software Engineering Workshops

978-1-4799-9874-6/15 $31.00 © 2015 IEEE

DOI 10.1109/ICGSEW.2015.15

35

So, summarizing, GreeSoM is a tool intended to carry out a
white-box energy consumption analysis to Java based systems.
GreeSoM performs such analysis by instrumenting the Java
legacy systems (to obtain execution logs) and executing the
new version of the code. GreeSoM matches the execution and
energy consumption information (captured by an external
hardware) in order to detect energy consumption peaks and
find out parts of the legacy system responsible of excessive
energy consumption.

It is important to point out that GreeSoM has not the ability
to measure software energy consumption. This task is carried
out by an external hardware data logger, which is connected to
the execution environment (PC) and generates log files with
information about power consumption.

The remainder of this chapter is organized as follows:
section II analyzes briefly some proposals related with software
energy consumption; section III presents a detailed explanation
of the characteristics of the tool; section IV includes a casa
study where the proposed tool is the subject of the case study;
finally, section V depict some conclusions and future lines of
the presented work.

II. STATE OF THE ART
On one hand, the most relevant proposals regarding energy

consumption measurement proposals will be discussed in this
section. On the other hand, the hardware data logger used to
keep track of the energy consumption in the proposed tool will
be also presented in order to enable the reader with a basic
knowledge about the hardware used to measure energy
consumption in the system where the legacy system is running.

A. Software energy consumption analysis tools
Despite of the fact that exist many proposals for energy

measurement [4], most of them are focused on IT
infrastructures (servers, network, hardware components, etc.).
Nonetheless, it is possible to find a few proposals regarding
software power consumption.

One of this proposals is Jalen [5], a software tool that uses
the profiling technique and energy models. The energy
consumption values obtained by Jalen are calculated by means
of an API called POWER API. This API obtains an estimation
of software energy consumption.

The second proposal is depicts a software tool called Green
Tracker [6]. In order to measure the energy consumption
attached to given software, this tool estimate the usage that this
software makes of the CPU. Green Tracker executes initial
benchmarks tasks in order to estimate whether a given system
is consuming more energy that expected in this system.

Both proposals implement an estimation of energy
consumption. The values obtained by Jalen are calcutalated by
means of mathematical models. In the case of Green Tracker,
the consumption estimation regarding the software system is
obtained by measuring the power consumption of the CPU. For
such reason, Green Tracker requires also an external power
consumption logger to keep track of energy consumption of the
system.

Another important approach is the one presented in [11],
where the authors present metrics for evaluating energy
efficiency in software, as well as an approach to use such
metrics through software development cycle. Also, the authors
propose the code instrumentation as a key point in order to
obtain detailed information about software consumption not
only about the whole system, but also about the different
modules that implement it.

B. Energy consumption hardware
GreeSoM implements the algorithms and logic in order to

evaluate the software energy consumption, nonetheless, the
energy consumption data must be provided by an external
hardware. In the presented approach, the measurement
hardware chosen is the multipurpose measurement HOBO
UX120 Data Logger with an additional transducer sensor to
measure amperes.

36

Fig. 1. Main interface of the support tool

III. MEASURING POWER CONSUMPTION IN LEGACY
SYSTEMS:THE TOOL

In this section GreeSoM, the tool supporting the
consumption measurement process will be presented. GreeSoM
(see Fig. 1) implements the following functionalities:

- Project driven: The engineer could create a
consumption measurement analysis. For each new
project, the tool creates a copy of the legacy system,
so the original one keeps unmodified.

- Instrumentation: Depending of the availability of the
legacy system (source code or bytecode), the tool
generates an instrumented copy of the legacy system.
This process will be further explained.
Instrumentation injects sentences into a copy of the
legacy system in order to product log files with
execution traces.

- Legacy System Execution: GreeSoM can launch and
stop the execution of an instrumented version of the
legacy system. This functionality is completely driven
by the user, since the user is the responsible of
deciding with usage scenarios must be executed. It is
highly recommended to plan the usage scenarios of
the system in order to obtain a more structured and
relevant information in the following analysis.

- Data Analysis: The execution and consumption
information is merged in order to correlate the system
(PC) consumption with the legacy system execution.
The energy consumption-measuring unit (produced by
the energy measurement hardware) is the ampere.

Next, the instrumentation execution of the legacy system
and data analysis will be explained in detail.

A. Instrumentation of the Legacy System
Firstly, the legacy system must be prepared to enable the

generation of execution traces. It is important to point out the
different possibilities that GreeSoM can deal with in the
instrumentation stage of the legacy system:

1. Java Source code is available. Source code is
available (the owning organization hast the legacy
system source code AND can provide it).
GreeSoM implements a Java parser that analyzes
the code and instrument the code with specific
sentences in order to generate log files with
specific execution information such as. The Java
parser implemented by the tool analysis the source
code and produce a functional equivalent version
of the legacy system with a new (but harmless)
functionality: the ability to generate log files
recording the execution information of the legacy
system. Each execution record is made up of:
execution thread, executing class, time and
method. An execution record will be generated
only under two circumstances: (i) a method is
starting or (ii) finishing its execution. Once the
instrumented version of the system is ready, it is
only required to compile it. At the moment,
GreeSoM only deals with Java-based systems,
since the instrumentation state is highly platform-
dependent.

2. Only Java bytecode is available. Sometimes,
source code is not available due some reasons: (i)
legacy system is so legacy that the source code is
lost; (ii) the legacy system has been developed by
a third party, so the company only owns the binary
files; or (iii) legal restrictions does not allow a
third party to examine the source code. So, in such
circumstances, it is not possible include sentences

37

to produce execution information (at least, Java
sentences). Therefore, the “.class” files must be
instrumented. For such an end, the ASM [7]
platform has been used. In just a few words, ASM
is a framework that uses a visitor-based approach
to generate new bytecode from an existing one
introducing new instructions, but without
modifying the current functionalities.

Secondly, the legacy system must now be executed in an
ordinary way. This new version of the legacy system will now
produce log files containing execution records with the
aforementioned information (see Fig. 2). The legacy system will
be producing execution information without interruption while
executing. The execution of the instrumented legacy system is
independent of GreeSoM.

B. Execution of the Legacy System
In the execution stage, not only the execution information

of the legacy system is collected (as log files), but also the
consumption information. In this case, the in order to record
the electric consumption an external hardware has been used
together with GreeSoM: the HOBO UX120 Analog Data
Logger. This hardware offer support to make measures
different kind of measures (depending on the connected
sensors) such as temperature, CO2, or in the context of this
work, energy consumption.

The data logger is connected to the PC running the
instrumented system, so, the data logger stores consumption
records while the system is executing and generation execution
traces. The data logger is set up with the same PC that executes
the instrumented legacy system, so, both the PC and the data
logger shares the same time and date. This is a crucial detail as
will be seen in the analysis stage.

C. Analysis of the information recorded
Finally, the next step when the legacy system execution has

finished is the analysis of the collected data. On one hand, the
instrumented legacy system produces execution log files (see
Fig. 2) (detailed records with the execution of each method of
the legacy system). On the other hand, the data logger stores
internally all the consumption records of the PC where the
legacy system has been running. The consumption records are
represented by means a “csv” file (see Fig. 3). In this third stage,
the analysis of the data is carried out. For such an end, the
presented approach takes as input both the execution and the
consumption log files.

The first step to carry out the consumption analysis is the
merging of the execution and consumption information. The
merging process present a sampling frequency problem:
execution files keeps a record each time a entry or exit method
is executed, but the consumption files store a consumption
record each second. When merging the information, for each
consumption record it is possible to associate more than one
(probably several tens) execution records. This fact establishes
a certain degree of uncertainty consisting on “which instruction
(or group of instructions) could be in charge of a given
consumption peak”.

So, from the log files (execution and consumption), our
framework proposes two analysis of the information:

• Execution information: By analyzing the records
of the execution log, it is possible calculate the
time spend in each method, class and package of
the legacy systems in relation with the total
execution time. With this information in mind, it is
possible estimate the relevance or importance of a
class or a package regarding the whole legacy
system. This aspect is closely related with the
technical debt concept [8].

Fig. 2. Excerpt of a execution log file generated by the instrumented legacy

system

Fig. 3. Excerpt of the data logger consumption traces

• Consumption information: By merging the
execution records (Fig. 2) with the consumption
ones (Fig. 3), it is possible to draw an energy
consumption chart (see Fig. 4). This energy
consumption char represent the fluctuation of the
energy consumption (amperes) along with the
execution time. At first sight only consumption
evolution is represented, however, the tool has a

38

merged representation of both execution and
consumption data. As a consequence, the tool
enables the expert to choose the most relevant
peaks of the graph in order to analyze what is
going on in this period (one second).

In order to fully understand what does the consumption
chart means, it is important to highlight some important aspects
about the colors used to represent the consumption evolution of
the energy consumption chart (see Fig. 4). The lines of the
consumption chart can be painted in three different colors:

- Green: during this period the legacy system has been
running all the time. That is to say, the legacy system
execution has not been interrupted. This information
is concluded from the information of the execution
file (see Fig. 2).

- Yellow: during this period the legacy system is
sharing the CPU with other processes. This represents
that the legacy system had a idle-time where other
applications have been using the CPU Therefore,
there exist some probability that the consumption is
not due to the legacy system. This information is
concluded from the execution log file when the
records do not cover all the time of the period.

- Red: during this period the legacy system has not been
executed, and thus, the recorded consumption must be
due to other processes running in the CPU. This
information, also concluded from the log file, is
concluded when there no record representing the
execution of any method of the legacy system. In the
example depicted in Fig. 4 there are no red lines since
the legacy system of the example has not been
stopped time enough (one second).

Fig. 4. Example of consumption chart

To analyze consumption peak would be easy, since
GreeSoM facilitates the reading of all the methods taking part
in this period. Nonetheless, repetitive consumption peaks may
reveal that there exist different fragments of the system that
cause these peaks. Detecting such fragments of code (methods)
would be a very interesting starting point in order to improve
software sustainability, but such analysis would become quite
complex (in the time of one peak, tens of methods would be
executed). In order to provide the engineer with an automated
solution to analyze sets of consumption peaks, the proposed
tool implements a Formal Concept Analysis (FCA) algorithm
[9, 10]. Thus, given a set of N consumption peaks, it is possible
determine in an automated way the maximum set of common
methods involved in the N peaks (that is to say, the common
candidates to cause the analyzed peaks).

Fig. 5. Measurement process

39

IV. CASE STUDY

A. Context of the Legacy System
The consumption measurement could be carried out using

as subject of study a Java system. Nonetheless, the validation
will be made taking GreeSoM as the subject of the validation
(that is to say, GreeSoM will instrument, execute and analyze
itself). Thus, it is possible to assess the energy consumption of
our own approach.

The proposed tool is composed of 231 Java classes with a
size of 4697 KB. To ease the analysis of the study, the
execution will be driven by the four functionalities/scenarios
drawn in section III (project creation, project instrumentation,
project execution, and data analysis/chart generation).

B. Execution of the Case Study
After launching GreeSoM, the following activities are

carried out in order to validate the approach:

1) A new project is created: This project consists on
all the source code files of GreeSoM.

2) Instrumentation of the legacy system: Since
GreeSoM is a Java-based system, it is possible
instrument it using the built-in parser. After
instrumenting GreeSoM (iGreeSoM hereinafter),
the source code is compiled (compilation is carried
out by a Java development environment). It is
important to point out that not all the classes of
GreeSoM were instrumented since some of then
correspond to external libraries (such as the Java
parser intended to analyze the source code in the
instrumentation stage). GreeSoM allow the
navigation in the created project in order to choose
the files to be instrumented.

3) Execution: GreeSoM launches iGreeSoM, and
then, the four scenarios mentioned are executed.
For the execution of iGreeSoM, a toy Java system
is used as “legacy information system”. The
execution of the instrumented toy Java system
took approximately 150 seconds.

4) Data analysis: After executing the toy example,
iGreeSoM loads the consumption and execution
logs and generates the graphs corresponding to the
execution of the toy Java system.

After finishing the forth step, the consumption and
execution logs of the instrumented proposed tool are obtained,
and the graphs corresponding graphs generated (see Fig. 6 and
Fig. 7).

C. Analysis of the results
On one hand, the consumption graph of iGreeSoM is

represented in Fig. 6. In this graph the consumption values
regarding each of the four functionalities has been highlighted
by dividing the whole graph into 5 segments using 4 (red)
vertical lines:

• First interval represents the consumption of the
initial tasks executed in the launch process of
iGreeSoM (e.g. drawing the user interface). It is
possible to check that in the beginning seconds, a
small peak is present (03:19:58). This peak would
be due to the initial load of the application from
“hard-drive”-to-“memory”.

• Second interval represents the consumption due to
the iGreeSoM project creation functionality. In
this interval, the consumption of iGreeSoM
fluctuates due to the copying process executed to
replicate the legacy system (the Java toy example)
in order to avoid any modification in the original
legacy system. In the creation stage, the Java toy
example is also instrumented. The most
noteworthy consumption peak takes place in the
time 03:20:14, and probably is due to the
instrumentation tasks.

• Third interval represents Java toy example
execution stage. This is the most time consuming
stage, since the engineer is playing with the
functionalities of the legacy system (Java toy
example). According to the meaning of the colours
of the consumption graph (see Fig. 6), it can be
concluded that while the Java toy example was
running, iGreeSoM has barely been executing any
instruction (which is in turn the expected
behavior). This interval finishes when the Java toy
example execution finishes and the execution log
file with all the execution traces is closed.

• Forth interval represents represent the location and
processing of consumption and execution of log
files. The two peaks probably represent the
consumption of the instructions to process the
records of the log files in order to save them into
the database to facilitate their processing.

• Fifth interval represents the graphs generation in
iGreeSoM. This task is probably the most energy-
consuming task, since all the information of the
log files must be processed and merged in order to
build the graphs. This fact could be observed very
high peak as well as in the fluctuation of the
consumption in the interval.

40

Fig. 6. Case study consumption graph

Fig. 7. Execution Time per class distribution graph

41

Regarding the execution graph (see Fig. 7), which present
the total time that each class has been running (0 to 16 seconds)
it is possible to draw the following conclusions regarding the
execution time:

- The most time-consuming class is the Façade class.
This makes sense since the Façade class is running
during all the time that the tool is being used.

- The second time-consuming class is the class in
charge of the graph management, since this class
binds all the tasks regarding the graph management
together. Also resizing or making zoom functionalities
are accessed from the graph UI, contributing in this
way to increase the time consumption.

- The third time-consuming class is the one
implementing the persistence responsibilities. For the
current case study, it makes sense, since the proposed
tool is continuously saving and querying information
from the database (for example in project creation,
project instrumentation, log processing, graph
generation, etc.).

D. Conclusions of the case study
Regarding this particular case study, where the subject of

study is the GreeSoM system (iGreeSoM), it is observed that
one of the functionalities that cause more consumption peaks is
the one regarded to graph generation (execution and
consumption graphs). After examining the methods related
with such functionality (registered in the seconds where the
consumption peak takes place) it is possible to find that the
algorithm to merge information and draw the results is quite
complex, with many loops, and database accesses.

This observation together with the fact that this class is also
a time consuming class, presents such class as a perfect
candidate to be refactored in order to improve the GreeSoM
sustainability.

V. CONCLUSIONS
In this paper, authors propose a software tool intended to

estimate the measurement of software energy consumption in
terms of energy. Despite of the fact that exist many proposals
for energy measurement [4], most of them are focused on IT
infrastructures (servers, network, hardware components, etc.).
The presented approach implements the technique of profiling
or instrumentation of source code in order to keep track of the
execution of a given legacy system. The instrumented legacy
system produces log files with detailed information about its
execution. While the system is executed, the energy
consumption of the system where legacy software is running is
measured using a hardware data logger. This hardware
measures the consumption of the whole system and produces
log files with the energy consumption (measured in amperes).
The execution information is merged with the consumption
information in order to obtain energy consumption graphs
where the energy peaks can be observed. Despite the current
measurement unit is the ampere, there exist other energy

measurement units such as joule of kWh that will be addressed
in the future.

In spite of the energy measurement is based on the whole
system, it is possible to query the methods of the legacy
involved in the period of time where a energy peak has
occurred.

The objective of the presented approach is not the precise
energy measurement of a legacy system, but the analysis of the
energy consumption evolution while the legacy system is
running. The analysis of this information give us the chance of
determine which parts of the legacy system are suspicious of an
excessive energy consumption, and in turn, offers the chance to
take any kind of corrective action.

In addition, the proposed approach is intended to serve as
an analysis tool in order to detect structures and patterns in the
software source code that are responsible of energy
consumption peaks (e.g. excessive database access, hard-drive
access of intensive user-interface interaction). While other
proposals are focused on detecting real power consumption of
a software system, the presented one is to detect energy
consumption peaks in order to find software structures that
would cause such energy peak.

Finally, future lines in the presented approach are to
improve the quality of the analysis of the execution and
consumption information in order to provide with more
accurate information. The execution of additional and more
complex case studies would lead us to develop a catalog of
“highly consuming practices and patterns in software source
code” or in other words, “bad smells for energy consumption”
in source code.

Another important research line that must be addressed is
the idle-time of the instrumented legacy system. As we
aforesaid, one second is a very long period of time (in terms of
the number of cycles spend in compute an instruction). This
fact implies that in this period not only many methods of the
same legacy system could be executed, but also other processes
running in the system processor can be producing power
consumption peaks. At the moment, GreeSoM is able to
determine (using the execution log files) when the legacy
system is running and when not.

In order to improve the accuracy of the analysis carried out
by GreeSoM, there exist certain energy consuming tasks that
have not been taken into account, such as the energy wasted on
writing the log files. This information should be recorded in
order obtain more realistic values in the measurements and the
obtained results. Another factor that might influence the
obtained information is the Java Virtual Machine (JVM) where
the legacy systems are executed. Since up to now we have not
conducted any research about the energy consumption of the
JVM it could be relevant to take it into account.

GreeSoM can deal only with Java systems, since code
instrumentation is a very highly platform-dependent state.
Nonetheless we are concerned with the fact that there exist
many legacy systems developed under other platforms. So,

42

future versions of GreeSoM should address the possibility to
instrument systems developed with other languages.

ACKNOWLEDGMENT
This work has been funded by the MOTERO project

(Consejería de Educación, Ciencia y Cultura de la Junta de
Comunidades de Castilla La Mancha, y Fondo Europeo de
Desarrollo Regional FEDER, PEII11- 0399-9449)

REFERENCES

1. Murugesan, S., Harnessing Green IT: Principles and Practices. IT

Professional, 2008. 10(1): p. 24-33.
2. Murugesan, S., et al., Fostering Green IT - Guest Editors'

Introduction. IT Professional, 2013. 15(1): p. 16-18.
3. Naumann, S., et al., The GREENSOFT Model: A reference model

for green and sustainable software and its engineering.
Sustainable Computing: Informatics and Systems, 2011. 1(4): p.
294-304.

4. Noureddine, A., R. Rouvoy, and L. Seinturier, A Review of Energy
Measurement Approaches. ACM SIGOPS Operating Systems
Review journal, 2013. 47(3): p. 42-49.

5. Noureddine, A., R. Rouvoy, and L. Seinturier, A Review of Energy
Measurement Approaches. Operating Systems Review, 2013.
47(3): p. 42 - 49.

6. Amsel, N. and B. Tomlinson. Green tracker: a tool for estimating
the energy consumption of software. in Proceeding of the CHI '10
Extended Abstracts on Human Factors in Computing Systems.
2010. Atlanta, Georgia, USA: ACM New York.

7. Kuleshov, E. Introduction to the ASM 2.0 Bytecode Framework.
2005; Available from: http://asm.ow2.org/doc/tutorial-
asm-2.0.html [Last access: 10/03/2015].

8. Kruchten, P., et al., Technical debt: towards a crisper definition
report on the 4th international workshop on managing technical
debt. Software Engineering Notes, 2013. 38(5): p. 51-54.

9. Wolff, K.E. A First Course in Formal Concept Analysis. in
Proceedings of the SoftStat'93. 1993.

10. Tonella, P. and M. Ceccato. Aspect Mining through the formal
concept analysis of execution traces. in In Proceedings of the 11th
Working Conference on Reverse Engineering (WCRE'04). 2004.
IEEE Computer.

11. Johann, T., Dick, M., Naumann, S. and E. Kern, How to measure
energy-efficiency of software: Metrics and measurement results, in
Proceedings of the First International Workshop on Green and
Sustainable Software (GREENS). 2005, IEEE Computer Society.
pp. 51 - 54

43

